Implementing a Direct RF Transmitter for Wireless Communications - Application Note - Maxim
نویسنده
چکیده
The application note summarizes the RF transmitter architectures of zero-IF, complex IF, high (real) IF, and direct RF before detailing the benefits of the direct RF transmitter for wireless applications, which have increased with the rise in smartphone and tablet computer use. As the application note shows, the superiority of a direct RF architecture with a high-performance DAC results in reduced component count and lower power dissipation while synthesizing very wideband signals. A similar version of this article appears on Wireless Design & Development, March 29, 2012. Introduction Wireless radio transmitters have evolved over the years from real IF (intermediate frequency) transmitters, to complex IF transmitters, to zero-IF transmitters. However, there are still limitations associated with these commonly used architectures. A newer approach, a direct RF radio transmitter, can overcome the limitations of traditional transmitters. This article compares various radio transmitter architectures for wireless communications. The direct RF radio transmitter, enabled by a high-performance digital-to-analog converter (DAC), will be shown to have clear advantages over the conventional technologies. The direct-to-RF radio transmitter also has its own challenges, but it paves the way for a true software-defined radio transmitter. An RF DAC, such as the 14-bit 2.3Gsps MAX5879, is an essential component for the direct-to-RF architecture. This DAC achieves excellent spurious and noise performance for bandwidths as wide as 1GHz. It features a novel approach for transmitting in the second and third Nyquist zones so it can perform RF synthesis at output frequencies as high as 3GHz. Measurement results verify the DAC's performance. Traditional RF Transmitter Architectures Traditional transmitter architectures have been implemented over last few decades based on the super-heterodyne principle, where an intermediate frequency (IF) is generated using a local oscillator (LO) and a mixer. The mixer typically creates two images, known as sidebands, around the LO. The wanted signal is then obtained by filtering out one of the sidebands. Modern radio transmitters, specifically the ones used in wireless base transceiver stations (BTS), commonly use complex in-phase (I) and quadrature phase (Q) symbols at baseband for a digitally modulated signal.
منابع مشابه
A 910MHz Injection Locked BFSK Transceiver for Wireless Body Sensor Network Using Colpitts Oscillator
A 910MHz high efficiency RF transceiver for Wireless Body Area Network in medical application is presented in this paper. High energy efficiency transmitter and receiver architectures are proposed. In wireless body sensor network, the transmitter must have higher efficiency compared with the receiver because a large amount of data is sent from sensor node to receiver of the base station and sma...
متن کاملAn Efficient Technique for Substrate Coupling Parasitic Extraction with Application to RF/Microwave Spiral Inductors (RESEARCH NOTE)
This paper presents an efficient modeling method, based on the microstrip lines theory, for the coupling between a substrate backplane and a device contact. We derive simple closed-form formulas for rapid extraction of substrate parasitics. We use these formulas to model spiral inductors as important substrate-noise sources in mixed-signal systems. The proposed model is verified for the freque...
متن کاملPerforming BluetoothTM RF Measurements Today
Agilent 2 Introduction Bluetooth TM wireless technology is an open specification for a wireless personal area network. It provides limited range RF connectivity for voice and data transmissions between information appliances. Bluetooth wireless technology eliminates the need for interconnecting cables and enables ad hoc networking among devices. Named after a tenth-century Danish King, Bluetoot...
متن کاملModeling and Simulation of RF and Microwave Systems - Tutorial - Maxim
This application note describes system-level characterization and modeling techniques for radio frequency (RF) and microwave subsystem components. It illustrates their use in a mixed-signal, mixed-mode system-level simulation. The simulation uses an RF transmitter with digital predistortion (DPD) as an example system. Details of this complex system and performance data are presented. A similar ...
متن کاملWireless Test Solutions.qxp
Application Note 1313 2 The demand for ubiquitous wireless communications is challenging the physical constraints placed upon current wireless communications systems. In addition, wireless customers expect wireline quality from their service providers. Service providers have invested a lot in a very limited slice of the radio spectrum. Consequently, network equipment manufacturers must produce ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013